Login with Facebook

What is a quantum computer?

The definition of the quantum computer is quite simple. It is a computer that exploits the laws of physics and quantum mechanics for data processing using the qubit as a fundamental unit. Unlike electronic calculation, at the base of computers as we have always known them, whose fundamental unit is the bit!

In particular, quantum bits have some properties that derive from the laws of quantum physics such as:

- The superposition of states (they can be 0 and 1 at the same time) due to which parallel rather than sequential calculations can be made as happens today with the computational capacity of "traditional" computers.

- The entanglement that is the correlation (the bond) that exists between one qubit and another, a very important aspect because it has a strong acceleration in the calculation process derives due to the influence that one qubit can produce on another even if they have distance.

- Quantum interference: It is, in fact, the effect of the first principle (the superposition of states); quantum interference allows you to "control" the measurement of qubits based on the wave nature of the particles. The interference represents the superposition of two or more waves that depend on whether there is an overlap or not between grows and bellies. For instance, higher and lower parts of the wave - constructive interference can occur. When crests or bellies coincide and form a wave, which is the sum of the overlapping waves, or destructive interference when overlapping are the crest of a wave and belly of another, in this case, the two waves cancel each other out.

To understand how we got to the quantum computer, we have to go back to the miniaturization of circuits and Moore's Law. From the 1960s onwards, there has been a progressive increase in the computing power of computers, an increase that has gone hand in hand with the miniaturization of the electronic circuits from which it derives the famous Moore's Law. According to this law, “the complexity of a microcircuit, measured with the number of transistors in a chip (processor), and the relative calculation speed doubles every 18 months ".

Following this law - which over time has become a real measurement parameter and also guide of objectives for processor manufacturers - we have come to have integrated microchips, i.e., processors that integrate a CPU, a GPU, and a Digital Signal inside them processing, within our smartphones.

However, a threshold that today has reached the limits of quantum mechanics, making it very complex (almost impossible) to continue the path of miniaturization, together with the increase in the density of transistors. Limit that has actually opened the way to a paradigm shift trying to exploit the laws of physics and quantum mechanics to achieve a computing power higher than that of computers based on electronic calculation without necessarily thinking about the miniaturization of circuits.

The information units that encode two states open and closed (whose values are 1 and 0) of a switch, exploit those that are called qubits. The units of quantum information that are coded not by 1 or 0 but by the quantum state in which a particle or atom is found, which can have both the value 1 and the value 0 at the same time. Moreover, in a variety of combinations that produce different quantum states (a particle can be 70% in state 1 and 30% in state 0, or 40% and 60%, or 15 and 85).

A condition that takes on an incredible meaning when you think of mathematical progression such as 2 qubits can have 4 states simultaneously.  For example, a pair of qubits can be in any quantum superposition of 4 states), 3 qubits can be in any 8 state superpositions. And, eight strings of three different bits: 000, 001, 010, 011, 100, 101, 110 and 111), 4 qubits in overlapping 16 states, 8 qubits of 256 states and so on. In a quantum computer, the n qubits can be in any superposition up to 2 to ‘n’ different states.

In fact, atomic and subatomic particles can exist in an overlap of quantum states, a situation that greatly expands the possibilities of encoding information by opening the possibility of exploiting this processing capacity for the resolution of extremely complex problems, such as those underlying the Artificial intelligence.

How a quantum computer works (overlapping states and entanglement)

The critical issues that have so far slowed down the race to develop these systems are related to the controlled manipulation of atoms and particles. It is possible with a few qubits but for complex processing hundreds and thousands of qubits are needed. Their connection and communication, as well as the development of algorithms are suitable for the quantum computer.

The functioning of the quantum computer, as mentioned in the first paragraph of this service) is based on two laws of quantum mechanics:

- The superposition principle from which derives, as we have seen, the possibility for the particles to be simultaneously in several different states. The superposition of states, in quantum physics, represents the simultaneous existence of all possible states of a particle or physical entity before its measurement. Only with the measurement, it is possible to define precisely the property of the qubit, and this is one of the most critical aspects that have not yet made the quantum computer available on a large scale. The particles are unstable, and their measurement is very complex, to which it must be added that the instability of the particles generates heat, which, to date, can only be controlled with advanced cooling systems.  

- The quantum correlation (entanglement): It expresses the constraint, the correlation precisely that exists between two particles or two qubits.

According to this principle, it is possible to know the state of a particle (or a qubit) by measuring the other with which it has the constraint. 

Quantum Computing: potential applications of the quantum computer

According to Gartner analysts, applications for quantum computing will be restricted and targeted, as the general-purpose quantum computer - most likely - will fail to be economically accessible on a large scale (at least not in the short term).

However, technology has the potential to revolutionize certain sectors. Quantum calculation could allow discoveries and be applied in many sectors:

- Machine-learning:  improved machine learning due to a faster forecasting structure (due to parallel calculation). Examples include quantum Boltzmann machines, semi-supervised learning, unsupervised learning, and deep learning.

- Artificial intelligence:  faster calculations could improve the perception, understanding, and diagnosis of circuit faults / binary classifiers.

- Chemistry:  New fertilizers, catalysts, battery chemicals will bring enormous improvements in the use of resources;

- Biochemistry:  New drugs, customized drugs, personalized medicine.

- Finance: the quantum calculation could allow the so-called faster and more complex "Monte Carlo simulations"; for example in the field of trading, optimization of "trajectories," market instability, price optimization, and hedging strategies.

- Medicine and health:  DNA gene sequencing, such as optimization of radiation therapy treatment/brain tumor detection, could be done in seconds rather than hours or weeks.

- Materials: super-resistant materials; anti-corrosive paints, lubricants, semiconductors, the research could be greatly accelerated due to super-fast calculations.

- Computer science:  faster multidimensional search functions, for example, query optimization, mathematical calculationsquantum computer, and simulations.


Send Comment

Need a custom

We will write it for you.
Order now

Free Essay Examples

Free essays:

An ultimate guide about biochemical reactions
Analysis methods of Transport through biological membranes
A Comprehensive Introduction to the Mona Lisa
An ultimate guide about Biomaterials
Big data analysis in evolutionary biology
Brain-Computer Interface systems with EEG signals
Biochemistry of neurotransmitter
Bipolar disorder: Symptoms, causes, diagnosis and treatment
Cellular excitability
Characterization of biological tissues, biomaterials
Characteristics of the byzantine architecture
Commonly Confused Words: Part 2
Dynamic Systems Modeling with Machine Learning
Digital Imaging: What Is It?
Different forms of dance you should know about
Data Science: Fundamental tools for data analysis
Entrepreneurship: Conceptual Framework for Evaluating Technology
Entrepreneurship: Opportunity and Design Thinking
Everything you need to know about enzymatic kinetics
Electromagnetic exposure effects on human organs
Funding sources for non-profit organizations
Famous Ballet Forms
Four postulates of natural selection
Famous African American literature authors
How to choose the topic of the senior capstone project
Healthcare technologies that help patients with better self-management
How to write a research project
How to complete your capstone projects effectively?
Importance of online journalism
Importance of 3d Modelling in Architecture
Introduction to Utilitarianism
Identity theft: what to do?
Kinetic models in biology and Related fields
Know about the different forms of traditional African dances
Know about the history of science
Latest technology trends
Mass transport in a biological system
Major themes in ancient Egyptian art
Major healthcare trends
Misconceptions About the Word “Introvert”
Nonlinear Dynamics in Biology & Biomedicine
NLS (Nonlinear System) - Revolutionary system in diagnostic medicine and therapy
Neural networks: what they are and what they are for
Nuclear fusion: What it is and how it works?
Postpartum depression: what is it?
Philosophy of Art: Written Forms as Art
Role of Homeostasis in Human Physiology
Role of a digital artist
Systems biology - An understanding the functioning of biological systems
Self-assembly for biological systems
School of American Ballet
Schizophrenia - a rare psychiatric illness | Essay
The relation between mass media & politics
Top journalism trends to know about
The impact of the technological innovations in medicine
The Defense mechanisms against infections
Understand the importance of investigative journalism
Urban planning in the US
Understanding the sociology of Race & Ethnicity
Various theoretical perspectives of sociology
Women empowerment in modern generation
What Makes a Good Leader
What is biopolymers?
What is the cytoplasm and its function?
4 Facts about Origin of Mathematics!
5 techniques to create an animation
13 Best colleges for political science in the world
3d Model Of Building
All you need to know about the ACA Code of ethics
Architecture and Democracy: An Introduction
Architecture and Democracy: Democratic Values
Architecture and Democracy: Democratic Procedures
All You Need to Know About a Synthesis Essay
An essential guide to understanding Film Theory
Application of Artificial Intelligence in Cyber Security
Applications of electrical engineering
Augmented reality: what it is, how it works, examples
Advantages And Disadvantages Of Social Networking
All you need to know about Cryptography
Applications of astrophysical science
All you need to know about architecture engineering
Applications of geological engineering
Artificial intelligence and medicine: an increasingly close relationship
An insight into Computational Biology
ACA code of conduct
A Rose for Emily
Applications of Mathematics in daily life
Architecture mistakes to avoid
All you need to know about Toxicology
All you need to know about Holistic Medicine
All you need to know about linguistics
An introduction to Linguistics and its subfields
All you need to know about Anxiety disorder
All you need to know about Drones
A Brief Insight into Political Science
Assumptions related to feminism
All you need to know about Byzantine emperors
All you need to know about labour economics
An insight into xenobots -the first-ever robots
An ultimate guide about Biomaterials
A Comprehensive Introduction to the Mona Lisa
Analysis methods of Transport through biological membranes
An ultimate guide about biochemical reactions
How to Write a Personal Essay
Housing Needs in America
How to Write a Description Essay
How to Create an Excellent Scholarship Essay?
How to write a cause and effect essay
How to Hire the Best Essay Writing Service Provider?
How to Write a College Application Essay?
How to get the most out of your English lectures
How to write Expository Essay
How to succeed in your psychology class?
How to Write an Academic Essay in the Shortest Time?
History of Journalism
How Different Sectors are Using Artificial intelligence (AI)
How to write an informative essay
How to deliver persuasive essays?
How to Give a Convincing Presentation
How to write an essay on leadership?
Historical Art Still Around Today
Humanoid robot: what it is, how it works and price
History of Chemistry
Healthcare Advanced Computer Power: Robotics, Medical Imaging, and More
Healthcare AI: Game Changers for Medical Decision-Making and Remote Patient Monitoring
How to understand different types of English
How to Cope with Chronic Pain
How African American choreographers and dancers have influenced American dance
How mobile robot can do in logistics or in production
How To Become a Successful Entrepreneur
History of the Philosophy of Feminism
How is the climate changing?
How to Track Your Content Marketing ROI
How to Gun control In the USA?
Historical and contemporary role of labour in the modern world
How breast cancers are classified?
How the cells of our body communicate?
How the Lymphatic System Works?
How Digestive System Works
How to complete your capstone projects effectively?
How to write a research project
Healthcare technologies that help patients with better self-management
How to choose the topic of the senior capstone project